Wakefield Acceleration by Radiation Pressure in Relativistic Shock Waves
نویسنده
چکیده
A particle acceleration mechanism by radiation pressure of precursor waves in a relativistic shock is studied. For a relativistic, perpendicular shock with the upstream bulk Lorentz factor of γ1 ≫ 1, large amplitude electromagnetic (light) waves are known to be excited in the shock front due to the synchrotron maser instability, and those waves can propagate towards upstream as precursor waves. We find that non-thermal, high energy electrons and ions can be quickly produced by an action of electrostatic wakefields generated by the ponderomotive force of the precursor waves. The particles can be quickly accelerated up to εmax/γ1mec 2 ∼ γ1 in the upstream coherent wakefield region, and they can be further accelerated during the nonlinear stage of the wakefield evolution. The maximum attainable energy is estimated by εmax/γ1mec 2 ∼ Lsys/(c/ωpe), where Lsys and c/ωpe are the size of an astrophysical object and the electron inertial length, respectively. Subject headings: acceleration of particles — radiation mechanisms: nonthermal — cosmic rays — plasmas — shock waves
منابع مشابه
شبیهسازی ذرهای شتاب دادن الکترونها در پلاسمای کم چگال
One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...
متن کاملOn Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves
Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this ...
متن کاملParticle Acceleration and Magnetic Field Generation in Electron - Positron Relativistic Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associ...
متن کاملA general solution to non-linear particle acceleration at non-relativistic shock waves
Diffusive acceleration at collisionless shock waves remains one of the most promising acceleration mechanisms for the description of the origin of cosmic rays at all energies. A crucial ingredient to be taken into account is the reaction of accelerated particles on the shock, which in turn determines the efficiency of the process. Here we propose a semi-analytical kinetic method that allows us ...
متن کاملDiffusive Shock Acceleration in Unmodified Relativistic, Oblique Shocks
We present results from a fully relativistic Monte Carlo simulation of diffusive shock acceleration (DSA) in unmodified shocks. The computer code uses a single algorithmic sequence to smoothly span the range from nonrelativistic speeds to fully relativistic shocks of arbitrary obliquity, providing a powerful consistency check. While known results are obtained for nonrelativistic and ultra-relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008